Synthesis and molecular structure of the diamagnetic trigonal-bipyramidal cluster $(\pi - MeC_5H_4)_5V_5(\mu_3-S)_6$

I.L. Eremenko, A.S. Katugin, A.A. Pasynskii*

N.S. Kurnakov Institute of General and Inorganic Chemistry, Academy of Sciences of the USSR, 31 Leninsky Prospekt, Moscow V-71 (U.S.S.R.)

Yu.T. Struchkov and V.E. Shklover

A.N. Nesmeyanov Institute of Organo-Element Compounds, Academy of Sciences of the USSR, 28 Vavilov Str., Moscow V-312 (U.S.S.R.)

(Received September 16th, 1987)

Abstract

The reaction of $(MeC_5H_4)_2V$ with HSCMe₃ in boiling heptane leads together with the previously described tetranuclear cluster $Cp_4V_4(\mu_3-S)_4$ (I) ($Cp = \eta$ - $CH_3C_5H_4$) to the diamagnetic pentanuclear cluster $Cp_5V_5(\mu_3-S)_6$ (II). The structure of II was confirmed by an X-ray study. The crystals of II are triclinic, *a* 9.9071(9), *b* 10.2952(9), *c* 16.9685(16) Å, α 94.062(7), β 90.399(7), γ 64.145(6)°, *V* 1553.0(4) Å³, space group *P*1. The metal framework of the cluster is in the form of a trigonal bipyramid with average $V_{eq}-V_{ax}$ and $V_{eq}-V_{eq}$ bond lengths of 3.062(2) and 3.206(2) Å, respectively. The μ_3 -bridge sulphur atoms are situated over the faces of the bipyramid at average $V_{eq}-S$ and $V_{ax}-S$ bond lengths of 2.396(2) and 2.226(2) Å, respectively, forming also intramolecular S...S contacts of 2.8 Å.

Introduction

Recently the structures of the deltohedron clusters $(C_5H_5)_nM_nO_m$ (M = Cr, n = m = 4 [1]; M = V, n = 5, m = 6 [1]; M = Ti, n = 6, m = 8 [2]) were described, containing a μ_3 -oxygen bridge over each triangular face. Our X-ray structure study of the μ_3 -sulphide bridge analogue of the chromium-containing cluster (CH₃C₅H₄)₄Cr₄S₄ showed that this diamagnetic complex contains a regular metallatetrahedron with equal Cr-Cr bonds of 2.822 Å [3], whereas in the antiferromagnetic complex (C₅H₅)₄Cr₄O₄ the Cr-Cr bonds are respectively 2.706, 2.826 and 2.898 Å [1].

Comparison of the function of the bridge ligands in other deltohedron clusters is of great interest, in particular those containing a trigonal-bipyramidal V_5 frame-

Table 1

Atomic coordinates and anisotropic temperature factors for II

(Atomic coordinates multiplied by 10^4 (for V and S by 10^5). Anisotropic temperature factors are given in the form: $T = \exp(-1/4(B_{11}ah + B_{22} + bk + B_{33}cl + 2B_{13}abhk + 2B_{13}achl + 2B_{23}bckl)$

Atom	x	ų	2	B_{11}	\bar{B}_{22}	B_{33}	B_{12}	B_{13}	B_{23}	
V(1)	26378(12)	43102(12)	66537(6)	1.93(5)	2.11(5)	1.16(4)	- 1.12(4)	- 0.07(4)	0.29(3)	
V(2)	34388(13)	23875(12)	81547(7)	1.82(5)	1.87(5)	1.54(4)	- 0.74(4)	-0.29(4)	0.43(4)	
V(3)	234(12)	45435(12)	78289(6)	1.57(4)	2.08(5)	1.21(4)	-0.87(4)	-0.05(3)	0.12(3)	
V(4)	17600(13)	18067(12)	67425(7)	2.17(5)	2.04(5)	1.60(5)	- 1.16(4)	0.07(4)	-0.06(4)	
V(5)	23388(13)	56623(12)	83463(6)	2.13(5)	2.07(5)	1.36(4)	-1.17(4)	-0.25(4)	0.20(4)	
S(1)	3747(19)	40614(18)	64290(9)	1.96(7)	2.33(7)	1.19(6)	-1.03(6)	-0.20(5)	0.15(5)	
S(2)	6941(19)	63538(18)	73795(10)	2.09(7)	1.87(6)	1.52(7)	-0.82(6)	-0.24(5)	0.35(5)	
S(3)	43599(19)	39972(18)	76930(10)	1.77(7)	2.45(7)	1.66(7)	-1.13(6)	-0.19(5)	0.29(5)	
S(4)	40317(19)	17511(18)	67663(10)	1.74(7)	2.12(7)	1.86(7)	-0.81(6)	0.21(5)	0.02(5)	
S(5)	12228(20)	20039(18)	80296(10)	2.25(7)	2.13(7)	1.66(7)	- 1.14(6)	0.05(6)	0.29(5)	
S(6)	15384(19)	42816(18)	89671(9)	2.02(7)	2.29(7)	1.13(6)	-1.08(6)	-0.12(5)	0.24(5)	
C(11)	4609(8)	4047(8)	5806(4)	3.5(4)	3.7(4)	1.3(3)	-2.2(3)	0.5(2)	0.5(2)	
C(12)	3526(8)	3757(8)	5353(4)	3.3(4)	4.1(4)	1.1(3)	-2.2(3)	0.2(2)	0.6(2)	
C(13)	2116(9)	5071(9)	5379(4)	3.8(4)	4.9(4)	1.4(3)	-2.3(3)	-0.3(3)	1.8(3)	
C(14)	2329(9)	6180(9)	5857(4)	4.3(4)	4.0(4)	2.1(3)	-2.3(3)	0.3(3)	1.4(3)	
C(15)	3869(9)	5539(8)	6126(4)	4.2(4)	3.8(4)	1.8(3)	-2.5(3)	0.5(3)	0.7(3)	
C(16)	6213(8)	3028(9)	5873(5)	2.1(3)	5.1(5)	3.0(4)	-1.2(3)	0.4(3)	0.6(3)	

1.6(3)	1.6(3)	1.9(3)	2.4(3)	1.4(3)	2.1(4)	0.3(3)	-0.4(3)	0.2(3)	0.0(3)	-0.2(3)	1.1(3)	-0.7(3)	- 2.1(4)	-2.1(4)	0.0(3)	-0.9(3)	0.4(4)	-0.6(3)	-0.3(3)	-0.5(3)	-0.2(3)	0.1(3)	- 1.6(4)	
-1.1(3)	-2.3(3)	-1.5(3)	-1.1(3)	-0.9(3)	0.0(4)	-0.1(2)	0.4(3)	0.9(3)	0.5(2)	0.3(2)	-0.9(3)	0.0(3)	0.0(3)	2.2(4)	-0.8(4)	-0.6(3)	-0.3(4)	0.1(3)	-0.5(3)	-0.7(3)	0.0(3)	-0.5(3)	1.7(4)	
-0.4(3)	-0.5(3)	0.0(3)	-0.6(3)	-0.3(3)	-1.2(4)	-0.8(3)	-1.8(3)	-1.6(3)	-0.8(3)	-0.7(3)	-0.2(3)	-2.0(3)	- 2.4(4)	-6.2(5)	- 3.7(4)	-1.1(3)	- 5.8(6)	- 1.8(3)	-2.5(3)	-2.4(3)	- 3.3(4)	-2.2(3)	- 2.3(4)	
3.6(4)	3.7(4)	2.4(4)	3.4(4)	3.6(4)	6.0(5)	2.3(3)	3.3(4)	2.9(4)	2.4(3)	2.1(3)	2.2(3)	2.1(3)	4.9(5)	4.0(5)	3.1(4)	3.6(4)	2.1(4)	2.5(3)	1.9(3)	3.4(4)	3.1(4)	2.4(3)	3.9(4)	
3.0(3)	3.4(4)	4.5(4)	3.3(4)	2.4(3)	5.6(5)	4.0(4)	4.5(4)	4.5(4)	3.8(4)	3.6(4)	5.3(5)	2.9(3)	4.2(4)	6.3(6)	3.1(4)	2.7(3)	6.5(6)	2.9(3)	3.6(4)	4.0(4)	3.9(4)	2.8(3)	5.3(5)	
1.9(3)	3.5(4)	3.4(4)	3.6(4)	2.2(3)	2.1(4)	1.4(3)	1.8(3)	2.1(3)	1.5(3)	1.5(3)	3.0(4)	4.0(4)	3.4(4)	8.4(7)	9.3(7)	4.0(4)	10.3(8)	3.5(4)	4.4(4)	3.8(4)	5.0(5)	5.2(5)	4.2(5)	
8350(5)	9017(5)	9410(5)	8980(5)	8323(5)	7798(6)	7536(4)	7625(5)	8416(5)	8820(4)	8276(4)	6805(5)	5498(4)	5878(5)	6562(5)	6609(5)	5954(5)	4710(5)	9324(4)	9581(4)	9060(5)	8474(5)	8647(5)	9730(5)	
808(8)	1818(9)	1627(9)	509(8)	15(8)	550(10)	6029(8)	4591(9)	4272(9)	5477(8)	6572(8)	6864(10)	696(8)	1110(9)	330(11)	- 545(9)	- 340(8)	1191(11)	7563(8)	6467(8)	6326(9)	7311(9)	8094(8)	8126(10)	
5930(8)	5448(9)	4279(9)	4037(9)	5048(8)	7235(9)	- 2445(8)	- 2295(8)	- 1918(8)	- 1834(7)	-2151(8)	- 2953(9)	1745(9)	318(9)	572(12)	2122(12)	2864(9)	2005(13)	1393(9)	2775(9)	3962(9)	3330(10)	1751(10)	-109(10)	
C(21)	C(22)	C(23)	C(24)	C(25)	C(26)	C(31)	C(32)	C(33)	C(34)	C(35)	C(36)	C(41)	C(42)	C(43)	C(4)	C(45)	C(46)	C(51)	C(52)	C(53)	C(54)	C(55)	C(56)	

Fig. 1. The molecular structure of $(\pi-\text{MeC}_5\text{H}_4)_5\text{V}_5(\mu_3-\text{S})_6$.

work. Therefore we carried out an X-ray study of the cluster $(CH_3C_5H_4)_5V_5S_6$ (II), briefly mentioned in ref. 4, which was recently obtained by Rauchfuss and coworkers, independently of us, via the reaction of $(CH_3C_5H_4)_2V_2S_4$ with PBu₃ and separated from the tetrahedron $(CH_3C_5H_4)_4V_4S_4$ (I) by sublimation in vacuum [4].

Results and discussion

Cluster II results together with the previously described tetrahedron $(CH_3C_5H_4)_4V_4S_4$ (I) [5] on heating bis(methylcyclopentadienyl)vanadium with tbutylmercaptane in boiling heptane (the products were separated chromatographically on Al₂O₃; yields: 13.5 and 60%, respectively):

$$(CH_{3}C_{5}H_{4})_{2}V + Me_{3}CSH \xrightarrow{100 \circ C} (CH_{3}C_{5}H_{4})_{4}V_{4}S_{4} + (CH_{3}C_{5}H_{4})_{5}V_{5}S_{6}$$
(I)
(II)

The mass spectrum of II shows a molecular ion peak P^+ (m/e 842) and also peaks of the products of successive cleavage of $CH_3C_5H_4$ ligands up to $V_5S_6^+$ (m/e 763, 684, 605, 526 and 447, respectively). The X-ray study of cluster II was carried out for objective determination of its structure (see Fig. 1 and Tables 1–3).

Bond	d	Bond	d
V(1)-V(2)	3.217(2)	V(3)-S(2)	2.405(2)
V(1) - V(3)	3.194(2)	V(3)-S(5)	2.403(2)
V(1)-V(4)	3.071(2)	V(3)-S(6)	2.395(2)
V(1) - V(5)	3.059(2)	V(3)-C(31)	2.323(8)
V(1) - S(1)	2.390(2)	V(3)–C(32)	2.300(9)
V(1)-S(2)	2.405(2)	V(3)-C(33)	2.304(9)
V(1)-S(3)	2.384(2)	V(3)-C(34)	2.326(8)
V(1)-S(4)	2.404(2)	V(3)-C(35)	2.335(8)
V(1)-C(11)	2.341(8)	V(4)-S(1)	2.223(2)
V(1)-C(12)	2.319(7)	V(4)–S(4)	2.226(2)
V(1)-C(13)	2.331(7)	V(4)-S(5)	2.226(2)
V(1)-C(14)	2.340(8)	V(4)-C(41)	2.333(7)
V(1)-C(15)	2.327(9)	V(4)-C(42)	2.330(9)
V(2)-V(3)	3.206(2)	V(4)-C(43)	2.30(1)
V(2) - V(4)	3.078(2)	V(4)-C(44)	2.282(9)
V(2)-V(5)	3.050(2)	V(4)-C(45)	2.316(8)
V(2) - S(3)	2.389(2)	V(5)-S(2)	2.229(2)
V(2)-S(4)	2.406(2)	V(5)-S(3)	2.224(2)
V(2)-S(5)	2.400(2)	V(5)–S(6)	2.228(2)
V(2)-S(6)	2.388(2)	V(5)-C(51)	2.329(7)
V(2)-C(21)	2.326(8)	V(5)-C(52)	2.305(8)
V(2)-C(22)	2.347(8)	V(5)-C(53)	2.309(9)
V(2)-C(23)	2.342(8)	V(5)-C(54)	2.300(9)
V(2)-C(24)	2.329(8)	V(5)-C(55)	2.327(8)
V(2)-C(25)	2.299(8)	S(1)-S(2)	2.894(2)
V(3)-V(4)	3.062(2)	S(3)-S(4)	2.839(2)
V(3) - V(5)	3.081(2)	S(5)-S(6)	2.869(2)
V(3)-S(1)	2.388(2)		

Table 2 Bond lengths d (Å) for II

Cluster II crystallizes as violet needles in the triclinic space group $P\overline{1}$, a 9.9071(9), b 10.2952(9), c 16.9685(16) Å, α 94.062(7), β 90.399(7), γ 64.145(6)°, V 1553.0(4) Å³, Z = 2.

The framework of the molecule is an unsymmetrical trigonal bipyramide from the V atoms, compressed along the axis, passing through the V_{ax} atoms and the centre of the $(V_{eq})_3$ triangle. The $V_{ax}-V_{eq}$ bond lengths of 3.050-3.081(2) Å are close to the sum of the covalent radii (3.0 Å), whereas the $V_{eq}-V_{eq}$ bonds are noticeably lengthened to 3.194-3.217(2) Å. Analogous non-equivalence is observed for the values of the V-S bond lengths of 2.223-2.229(2) Å for $V_{ax}-S$ and 2.384-2.406(2) Å for $V_{eq}-S$. This may be a consequence of intramolecular bonding of the sulphur atoms, situated over the faces of the $V_{ax}(V_{eq})_2$ triangles, while short S...S contacts of sulphur atoms are observed, both connected with one V_{ax} apex (3.15 Å) and with different V_{ax} apexes (2.85 Å). The geometry of cluster II agrees principally with that recently found for the dication $[(CH_3C_5H_4)_5V_5S_6]^{2+}(TCNQ^-)_2$ (III) [4], in which the $V_{eq}-V_{eq}$ bonds are only slightly lengthened (3.21-3.25 Å) and the $V_{eq}-V_{ax}$ bonds are shortened (2.97-3.01 Å). In addition, the S...S contacts between the S atoms bridged for equatorial V-V bonds are also shortened (to 2.77 Å). At the same time, the lengths of the V-S bonds remain practically unchanged (V_{ax} -S of 2.22 Å, V_{eq} -S

Table 3

Bond angles ω (°) for II

Angle	ω	Angle	ω
V(2)V(1)V(3)	60.00(4)	S(2)V(1)S(4)	137.98(8)
V(2)V(1)V(4)	58.56(4)	S(3)V(1)S(4)	72.72(7)
V(2)V(1)V(5)	58.09(4)	V(1)V(2)V(3)	59.64(4)
V(2)V(1)S(1)	92.70(6)	V(1)V(2)V(4)	58.35(4)
V(2)V(1)S(2)	92.55(6)	V(1)V(2)V(5)	58.36(4)
V(2)V(1)S(3)	47.67(5)	V(1)V(2)S(3)	47.55(5)
V(2)V(1)S(4)	48.05(5)	V(1)V(2)S(4)	47.99(5)
V(3)V(1)V(4)	58.47(4)	V(1)V(2)S(5)	92.52(6)
V(3)V(1)V(5)	58.98(4)	V(1)V(2)S(6)	92.42(6)
V(3)V(1)S(1)	48.02(5)	V(3)V(2)V(4)	58.28(4)
V(3)V(1)S(2)	48.39(5)	V(3)V(2)V(5)	58.94(4)
V(3)V(1)S(3)	93.11(6)	V(3)V(2)S(3)	92.73(6)
V(3)V(1)S(4)	92.65(6)	V(3)V(2)S(4)	92.32(6)
V(4)V(1)V(5)	105.84(5)	V(3)V(2)S(5)	48.17(5)
V(4)V(1)S(1)	45.96(5)	V(3)V(2)S(6)	48.00(5)
V(4)V(1)S(2)	105.58(6)	V(4)V(2)V(5)	105.90(5)
V(4)V(1)S(3)	104.62(6)	V(4)V(2)S(3)	104.31(6)
V(4)V(1)S(4)	46.01(5)	V(4)V(2)S(4)	45.90(5)
V(5)V(1)S(1)	105.72(6)	V(4)V(2)S(5)	45.91(5)
V(5)V(1)S(2)	46.26(5)	V(4)V(2)S(6)	104.88(6)
V(5)V(1)S(3)	46.19(3)	V(5)V(2)S(3)	46.31(5)
V(5)V(1)S(4)	104.64(6)	V(5)V(2)S(4)	104.85(6)
S(1)V(1)S(2)	74.25(7)	V(5)V(2)S(5)	105.73(6)
S(1)V(1)S(3)	138.00(8)	V(5)V(2)S(6)	46.43(5)
S(1)V(1)S(4)	91.33(7)	S(3)V(2)S(4)	72.61(7)
S(2)V(1)S(3)	91.81(7)	S(3)V(2)S(5)	137.75(8)
S(3)V(2)S(6)	92.25(7)	S(1)V(3)S(2)	74.28(7)
S(4)V(2)S(5)	91.15(7)	S(1)V(3)S(5)	91.61(7)
S(4)V(2)S(6)	137.58(8)	S(1)V(3)S(6)	138.06(8)
S(5)V(2)S(6)	73.64(7)	S(2)V(3)S(5)	138.31(8)
V(1)V(3)V(2)	60.35(4)	S(2)V(3)S(6)	91.06(7)
V(1)V(3)V(4)	58.76(4)	S(5)V(3)S(6)	73.44(7)
V(1)V(3)V(5)	58.32(4)	V(1)V(4)V(2)	63.09(4)
V(1)V(3)S(1)	48.07(5)	V(1)V(4)V(3)	62.77(4)
V(1)V(3)S(2)	48.38(5)	V(1)V(4)S(1)	50.63(6)
V(1)V(3)S(5)	93.02(6)	V(1)V(4)S(4)	50.98(6)
V(1)V(3)S(6)	92.85(6)	V(1)V(4)S(5)	100.11(7)
V(2)V(3)V(4)	58.77(4)	V(2)V(4)V(3)	62.95(4)
V(2)V(3)V(5)	58.01(4)	V(2)V(4)S(1)	99.98(7)
V(2)V(3)S(1)	93.02(6)	V(2)V(4)S(4)	50.91(6)
V(2)V(3)S(2)	92.83(6)	V(2)V(4)S(5)	50.75(6)
V(2)V(3)S(5)	48.08(5)	V(3)V(4)S(1)	50.74(6)
V(2)V(3)S(6)	47.81(5)	V(3)V(4)S(4)	99.96(7)
V(4)V(3)V(5)	105.54(5)	V(3)V(4)S(5)	51.12(6)
V(4)V(3)S(1)	46.11(5)	S(1)V(4)S(4)	100.84(8)
V(4)V(3)S(2)	105.85(6)	S(1)V(4)S(5)	101.10(8)
V(4)V(3)S(5)	46.14(5)	S(4)V(4)S(5)	100.87(8)
V(4)V(3)S(6)	105.16(6)	V(1)V(5)V(2)	63.55(4)
V(5)V(3)S(1)	105.13(6)	V(1)V(5)V(3)	62.69(4)
V(5)V(3)S(2)	45,93(5)	V(1)V(5)S(2)	51.21(6)
V(5)V(3)S(5)	104.74(6)	V(1)V(5)S(3)	50.68(6)
V(5)V(3)S(6)	45.94(5)	V(1)V(5)S(6)	100.03(7)
V(2)V(5)V(3)	63.05(4)	V(1)S(2)V(5)	82.54(7)
V(2)V(5)S(2)	100.81(7)	V(3)S(2)V(5)	83.24(7)
			· · ·

Table 3 (continued)

Angle	ω	Angle	ω	
V(2)V(5)S(3)	50.96(6)	V(1)S(3)V(2)	84.77(7)	
V(2)V(5)S(6)	50.92(6)	V(1)S(3)V(5)	83.13(7)	
V(3)V(5)S(2)	50.83(6)	V(2)S(3)V(5)	82.72(7)	
V(3)V(5)S(3)	99.57(7)	V(1)S(4)V(2)	83.96(7)	
V(3)V(5)S(6)	50.56(6)	V(1)S(4)V(4)	83.01(7)	
S(2)V(5)S(3)	101.14(8)	V(2)S(4)V(4)	83.19(7)	
S(2)V(5)S(6)	100.43(8)	V(2)S(5)V(3)	83.75(7)	
S(3)V(5)S(6)	101.31(8)	V(2)S(5)V(4)	83.35(7)	
V(1)S(1)V(3)	83.91(7)	V(3)S(5)V(4)	82.74(7)	
V(1)S(1)V(4)	83.41(7)	V(2)S(6)V(3)	84.19(7)	
V(3)S(1)V(4)	83.15(7)	V(2)S(6)V(5)	82.65(7)	
V(1)S(2)V(3)	83.23(7)	V(3)S(6)V(5)	83.49(7)	

of 2.38 Å). The same relatively weak influence of the removal of two electrons on the framework geometry was observed earlier for the series of clusters (i- PrC_5H_4)₄Mo₄S₄ⁿ⁺ (n = 0, 1, 2) [6].

On the other hand, the metalla framework of the known oxygen-bridge cyclopentadienyl analogue Cp₅V₅O₆ seems to be much more compressed (V_{ax}-V_{eq} of 2.752(2) Å, V_{eq}-V_{eq} of 2.740(2) Å, V_{ax}-O of 1.861(5) Å, V_{eq}-O of 1.992(6) Å, O...O 2.444(8) Å) [1]. It is worth noting that this oxygen-containing cluster has antiferromagnetic properties while cluster II is diamagnetic, in contrast to the data [4] on its weak paramagnetism ($\mu_{effective}$ was equal to 0.98 μ_B). The same influence of the nature of the bridge ligands on the magnetic properties of clusters was observed in the tetrahedral chromium clusters Cp₄Cr₄X₄, which are diamagnetic when X = S [7] and antiferromagnetic when X = O [1]. Apparently, the electronic structure of Cp₅V₅X₆ⁿ clusters has the same pecularities as those in the case of the tetrahedral clusters Cp₄M₄X₄ⁿ [8], where the extended Hückel method calculation has shown the slightly antibonding character of the HOMO and also the approach of the HOMO and LUMO upon going from X = S to X = O.

Experimental

All operations were carried out in a pure argon atmosphere. Heptane was purified by distillation over dispersed Na in a pure argon stream. IR spectra were measured with a Specord IR-75 instrument. Mass spectra were recorded on an automatic DS-50 system. X-Ray data were obtained with an automatic four-circle Hilger & Watts diffractometer (λ Mo- K_{α} , $\theta/2\theta$ scan, $2 \le \theta \le 60^{\circ}$). The structure was solved by direct methods and refined using block-diagonal approximation for all non-hydrogen atoms to R = 0.048 ($R_w = 0.061$) for 5420 reflections. All calculations were performed on an Eclypse S/200 computer using INEXTL programs [9].

 $(MeC_5H_4)_5V_5(\mu_3-S)_6$

3.5 cm³ of HSCMe₃ (33.3 mM) was added to a violet solution of 3.45 g (16.5 mM) of $(MeC_{5}H_{4})_{2}V$ in 60 ml of heptane and the reaction mixture obtained was refluxed for 3 h. The brown solution obtained was concentrated to 10 ml at 50 °C/10 Torr and was chromatographed on a 15 × 3 cm Al₂O₃ column; brown (A)

and then violet (B) zones were eluted with heptane. 1.6 g (2.46 mM) of $(MeC_5H_4)_4V_4S_4$ [5] was isolated from the brown eluant (A). The violet eluant (B) was concentrated to 10 ml and cooled to -5° C. The precipitated violet needles were separated from the solution, washed with cool pentane and dried in vacuo. Yield: 0.36 g (0.43 mM, 13.5%). IR spectrum (ν , cm⁻¹): 435w, 595w, 795w, 805w, 1020m, 1355m, 1435m, 1485w, 1505w, 2840m, 2905m, 2940m, 3080w.

Acknowledgements

The authors are grateful to Dr. D.V. Zagorevskii for measuring the mass spectra and to Dr. O.G. Ellert for magnetochemical measurements.

References

- 1 F. Bottomley, D.E. Paez, P.S. White, J. Am. Chem. Soc., 104 (1982) 5651.
- 2 J.C. Huffman, J.G. Stone, W.C. Krusell, K.G. Caulton, J. Am. Chem. Soc., 99 (1977) 5829.
- 3 A.A. Pasynskii, I.L. Eremenko, Yu.V. Rakitin, V.M. Novotortsev, O.G. Ellert, V.T. Kalinnikov, V.E. Shklover, Yu.T. Struchkov, T.Kh. Kurbanov, G.Sh. Gasanov, J. Organomet. Chem., 248 (1983) 309.
- 4 C.M. Bolinger, J. Darkwa, G. Gammie, S.D. Gammon, J.W. Lyding, T.B. Rauchfuss, S.R. Wilson, Organometallics, 5 (1986) 2386.
- 5 I.L. Eremenko, A.A. Pasynskii, Yu.T. Struchkov, A.S. Katugin, O.G. Ellert, V.E. Shklover, Izv. Akad. Nauk SSSR, Ser. Khim., (1984) 1669.
- 6 J.A. Bandy, C.E. Davies, J.C. Green, M.L.H. Green, R. Prout, D.P.S. Rodgers, J. Chem. Soc., Chem. Commun., (1983) 1395.
- 7 E.O. Fischer, K. Ulm, H.P. Fritz, Chem. Ber., 93 (1960) 2167.
- 8 P.D. Williams, M.D. Curtis, Inorg. Chem., 25 (1986) 4562.
- 9 R.G. Gerr, A.I. Yanovski, Yu.T. Struchkov, Kristallographia, 28 (1983) 1029.