Synthesis and molecular structure of the diamagnetic trigonal-bipyramidal cluster $\left(\pi-\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{5} \mathrm{~V}_{5}\left(\mu_{3}-\mathrm{S}\right)_{6}$

I.L. Eremenko, A.S. Katugin, A.A. Pasynskii*
N.S. Kurnakov Institute of General and Inorganic Chemistry, Academy of Sciences of the USSR, 31 Leninsky Prospekt, Moscow V-71 (U.S.S.R.)

Yu.T. Struchkov and V.E. Shklover
A.N. Nesmeyanov Institute of Organo-Element Compounds, Academy of Sciences of the USSR, 28 Vavilov Str., Moscow V-312 (U.S.S.R.)
(Received September 16th, 1987)

Abstract

The reaction of $\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{~V}$ with HSCMe_{3} in boiling heptane leads together with the previously described tetranuclear cluster $\mathrm{Cp}_{4} \mathrm{~V}_{4}\left(\mu_{3}-\mathrm{S}\right)_{4}$ (I) ($\mathrm{Cp}=\boldsymbol{\eta}^{-}$ $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}$) to the diamagnetic pentanuclear cluster $\mathrm{Cp}_{5} \mathrm{~V}_{5}\left(\mu_{3}-\mathrm{S}\right)_{6}$ (II). The structure of II was confirmed by an X-ray study. The crystals of II are triclinic, a 9.9071(9), b 10.2952(9), c 16.9685(16) \AA, α 94.062(7), β 90.399(7), $\gamma 64.145(6)^{\circ}, V 1553.0(4) \AA^{3}$, space group $P \overline{1}$. The metal framework of the cluster is in the form of a trigonal bipyramid with average $\mathrm{V}_{\mathrm{eq}}-\mathrm{V}_{\mathrm{ax}}$ and $\mathrm{V}_{\mathrm{eq}}-\mathrm{V}_{\mathrm{eq}}$ bond lengths of 3.062 (2) and 3.206(2) \AA, respectively. The μ_{3}-bridge sulphur atoms are situated over the faces of the bipyramid at average $\mathrm{V}_{\mathrm{eq}}-\mathrm{S}$ and $\mathrm{V}_{\mathrm{ax}}-\mathrm{S}$ bond lengths of 2.396(2) and 2.226(2) \AA, respectively, forming also intramolecular $\mathrm{S} . . \mathrm{S}$ contacts of $2.8 \AA$.

Introduction

Recently the structures of the deltohedron clusters $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{n} \mathrm{M}_{n} \mathrm{O}_{m}(\mathrm{M}=\mathrm{Cr}$, $n=m=4[1] ; \mathrm{M}=\mathrm{V}, n=5, m=6[1] ; \mathrm{M}=\mathrm{Ti}, n=6, m=8$ [2]) were described, containing a μ_{3}-oxygen bridge over each triangular face. Our X-ray structure study of the μ_{3}-sulphide bridge analogue of the chromium-containing cluster $\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{4} \mathrm{Cr}_{4} \mathrm{~S}_{4}$ showed that this diamagnetic complex contains a regular metallatetrahedron with equal $\mathrm{Cr}-\mathrm{Cr}$ bonds of $2.822 \AA$ [3], whereas in the antiferromagnetic complex $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right){ }_{4} \mathrm{Cr}_{4} \mathrm{O}_{4}$ the $\mathrm{Cr}-\mathrm{Cr}$ bonds are respectively $2.706,2.826$ and $2.898 \AA$ [1].

Comparison of the function of the bridge ligands in other deltohedron clusters is of great interest, in particular those containing a trigonal-bipyramidal V_{5} frame-
Table 1
Atomic coordinates and anisotropic temperature factors for II
(Atomic coordinates multiplied by 10^{4} (for V and S by 10^{5}). Anisotropic temperature factors are given in the form: $T=\exp -1 / 4\left(B_{11} a h+B_{22}+b k+B_{33} c l+\right.$ $\left.2 B_{12} a b h k+2 B_{13} a c h l+2 B_{23} b c k l\right)$

Atom	\boldsymbol{x}	y	2	B_{11}	B_{22}	B_{33}	B_{12}	\bar{B}_{13}	B_{23}
V(1)	26378(12)	43102(12)	66537(6)	1.93(5)	2.11(5)	1.16(4)	-1.12(4)	-0.07(4)	0.29(3)
V(2)	34388(13)	23875(12)	81547(7)	1.82(5)	1.87(5)	1.54(4)	-0.74(4)	-0.29(4)	0.43(4)
V(3)	234(12)	45435(12)	78289(6)	1.57(4)	2.08(5)	1.21(4)	-0.87(4)	-0.05(3)	0.12(3)
V(4)	17600(13)	18067(12)	67425(7)	2.17 (5)	2.04(5)	1.60 (5)	-1.16(4)	0.07(4)	-0.06(4)
$\mathrm{V}(5)$	23388(13)	56623(12)	83463(6)	2.13(5)	2.07(5)	1.36(4)	-1.17(4)	-0.25(4)	0.20(4)
S(1)	3747(19)	40614(18)	64290(9)	1.96 (7)	2.33(7)	1.19(6)	-1.03(6)	-0.20(5)	0.15(5)
S(2)	6941(19)	63538(18)	73795(10)	2.09(7)	1.87(6)	1.52(7)	-0.82(6)	-0.24(5)	0.35(5)
S(3)	43599(19)	39972(18)	76930(10)	1.77 (7)	2.45(7)	1.66 (7)	-1.13(6)	-0.19(5)	0.29(5)
S(4)	40317(19)	17511(18)	67663(10)	1.74 (7)	2.12(7)	1.86(7)	-0.81(6)	0.21(5)	0.02(5)
S(5)	12228(20)	20039(18)	80296(10)	2.25(7)	2.13(7)	1.66(7)	-1.14(6)	0.05(6)	0.29(5)
S(6)	15384(19)	42816(18)	89671(9)	2.02(7)	2.29(7)	1.13(6)	-1.08(6)	-0.12(5)	0.24(5)
C(11)	4609(8)	4047(8)	5806(4)	$3.5(4)$	3.7(4)	1.3(3)	-2.2(3)	0.5(2)	0.5(2)
C(12)	3526(8)	3757(8)	5353(4)	3.3 (4)	4.1(4)	1.1(3)	-2.2(3)	0.2(2)	0.6(2)
C(13)	2116(9)	5071(9)	5379(4)	3.8(4)	4.9(4)	1.4 (3)	-2.3(3)	-0.3(3)	1.8(3)
C(14)	2329(9)	6180(9)	5857(4)	4.3(4)	4.0(4)	2.1(3)	-2.3(3)	0.3(3)	1.4 (3)
C(15)	3869(9)	5539(8)	6126(4)	4.2(4)	3.8(4)	1.8(3)	-2.5(3)	0.5(3)	0.7(3)
C(16)	6213(8)	3028(9)	5873(5)	2.1(3)	5.1(5)	3.0(4)	-1.2(3)	0.4(3)	0.6(3)

$1.6(3)$
$1.6(3)$
$1.9(3)$
$2.4(3)$
$1.4(3)$
$2.1(4)$
$0.3(3)$
$-0.4(3)$
$0.2(3)$
$0.0(3)$
$-0.2(3)$
$1.1(3)$
$-0.7(3)$
$-2.1(4)$
$-2.1(4)$
$0.0(3)$
$-0.9(3)$
$0.4(4)$
$-0.6(3)$
$-0.3(3)$
$-0.5(3)$
$-0.2(3)$
$0.1(3)$
$-1.6(4)$

ฐิze

Fig. 1. The molecular structure of $\left(\pi-\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{5} \mathrm{~V}_{5}\left(\mu_{3}-\mathrm{S}\right)_{6}$.
work. Therefore we carried out an X-ray study of the cluster $\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{5} \mathrm{~V}_{5} \mathrm{~S}_{6}$ (II), briefly mentioned in ref. 4 , which was recently obtained by Rauchfuss and coworkers, independently of us, via the reaction of $\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{~V}_{2} \mathrm{~S}_{4}$ with PBu_{3} and separated from the tetrahedron $\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{4} \mathrm{~V}_{4} \mathrm{~S}_{4}$ (I) by sublimation in vacuum [4].

Results and discussion

Cluster II results together with the previously described tetrahedron $\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{4} \mathrm{~V}_{4} \mathrm{~S}_{4}$ (I) [5] on heating bis(methylcyclopentadienyl)vanadium with t butylmercaptane in boiling heptane (the products were separated chromatographically on $\mathrm{Al}_{2} \mathrm{O}_{3}$; yields: 13.5 and 60%, respectively):

The mass spectrum of II shows a molecular ion peak $P^{+}(m / e 842)$ and also peaks of the products of successive cleavage of $\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}$ ligands up to $\mathrm{V}_{5} \mathrm{~S}_{6}{ }^{+}(\mathrm{m} / e$ $763,684,605,526$ and 447 , respectively). The X-ray study of cluster II was carried out for objective determination of its structure (see Fig. 1 and Tables 1-3).

Table 2
Bond lengths $d(\AA)$ for II

Bond	d	Bond	d
$\mathrm{V}(1)-\mathrm{V}(2)$	3.217(2)	$\mathrm{V}(3)-\mathrm{S}(2)$	2.405(2)
$V(1)-V(3)$	3.194(2)	$V(3)-S(5)$	2.403(2)
$\mathrm{V}(1)-\mathrm{V}(4)$	3.071(2)	$\mathrm{V}(3)-\mathrm{S}(6)$	$2.395(2)$
$\mathrm{V}(1)-\mathrm{V}(5)$	3.059(2)	$\mathrm{V}(3)-\mathrm{C}(31)$	2.323(8)
$\mathrm{V}(1)-\mathrm{S}(1)$	2.390 (2)	$\mathrm{V}(3)-\mathrm{C}(32)$	$2.300(9)$
$\mathrm{V}(1)-\mathrm{S}(2)$	2.405(2)	$V(3)-C(33)$	2.304 (9)
V(1)-S(3)	2.384(2)	$V(3)-C(34)$	$2.326(8)$
V(1)-S(4)	2.404(2)	$V(3)-C(35)$	$2.335(8)$
$\mathrm{V}(1)-\mathrm{C}(11)$	2.341(8)	$V(4)-S(1)$	2.223(2)
$\mathrm{V}(1)-\mathrm{C}(12)$	2.319(7)	$\mathrm{V}(4)-\mathrm{S}(4)$	2.226 (2)
$\mathrm{V}(1)-\mathrm{C}(13)$	2.331(7)	$V(4)-S(5)$	2.226(2)
$\mathrm{V}(1)-\mathrm{C}(14)$	2.340 (8)	$\mathrm{V}(4)-\mathrm{C}(41)$	$2.333(7)$
$\mathrm{V}(1)-\mathrm{C}(15)$	2.327(9)	$\mathrm{V}(4)-\mathrm{C}(42)$	2.330(9)
$\mathrm{V}(2)-\mathrm{V}(3)$	3.206(2)	$\mathrm{V}(4)-\mathrm{C}(43)$	2.30(1)
$\mathrm{V}(2)-\mathrm{V}(4)$	3.078(2)	$\mathrm{V}(4)-\mathrm{C}(44)$	2.282(9)
$\mathrm{V}(2)-\mathrm{V}(5)$	3.050(2)	$\mathrm{V}(4)-\mathrm{C}(45)$	2.316 (8)
V(2)-S(3)	2.389(2)	$V(5)-S(2)$	2.229(2)
$\mathrm{V}(2)-\mathrm{S}(4)$	2.406(2)	$\mathrm{V}(5)-\mathrm{S}(3)$	2.224(2)
V(2)-S(5)	2.400(2)	$\mathrm{V}(5)-\mathrm{S}(6)$	2.228(2)
V(2)-S(6)	2.388(2)	$V(5)-C(51)$	2.329(7)
$\mathrm{V}(2)-\mathrm{C}(21)$	2.326(8)	$V(5)-C(52)$	$2.305(8)$
$\mathrm{V}(2)-\mathrm{C}(22)$	2.347(8)	$\mathrm{V}(5)-\mathrm{C}(53)$	$2.309(9)$
$V(2)-C(23)$	2.342(8)	$\mathrm{V}(5)-\mathrm{C}(54)$	$2.300(9)$
$\mathrm{V}(2)-\mathrm{C}(24)$	2.329(8)	$V(5)-C(55)$	2.327(8)
$\mathrm{V}(2)-\mathrm{C}(25)$	2.299(8)	S(1)-S(2)	2.894(2)
$\mathrm{V}(3)-\mathrm{V}(4)$	3.062(2)	S(3)-S(4)	2.839(2)
$V(3)-V(5)$	3.081(2)	S(5)-S(6)	2.869(2)
V(3)-S(1)	2.388(2)		

Cluster II crystallizes as violet needles in the triclinic space group $P \overline{1}, a$ 9.9071(9), $b 10.2952(9), c 16.9685(16) \AA, \alpha$ 94.062(7), β 90.399(7), $\gamma 64.145(6)^{\circ}, V$ 1553.0(4) $\AA^{3}, Z=2$.

The framework of the molecule is an unsymmetrical trigonal bipyramide from the V atoms, compressed along the axis, passing through the V_{ax} atoms and the centre of the $\left(\mathrm{V}_{\mathrm{eq}}\right)_{3}$ triangle. The $\mathrm{V}_{\mathrm{ax}}-\mathrm{V}_{\mathrm{eq}}$ bond lengths of $3.050-3.081(2) \AA$ are close to the sum of the covalent radii ($3.0 \AA$), whereas the $V_{\text {eq }}-V_{\text {eq }}$ bonds are noticeably lengthened to 3.194-3.217(2) \AA. Analogous non-equivalence is observed for the values of the $\mathrm{V}-\mathrm{S}$ bond lengths of 2.223-2.229(2) \AA for $\mathrm{V}_{\mathrm{ax}}-\mathrm{S}$ and 2.384-2.406(2) \AA for $\mathrm{V}_{\text {eq }}-\mathrm{S}$. This may be a consequence of intramolecular bonding of the sulphur atoms, situated over the faces of the $\mathrm{V}_{\mathrm{ax}}\left(\mathrm{V}_{\mathrm{eq}}\right)_{2}$ triangles, while short $\mathrm{S} \ldots \mathrm{S}$ contacts of sulphur atoms are observed, both connected with one $V_{a x}$ apex ($3.15 \AA$) and with different V_{ax} apexes $(2.85 \AA$). The geometry of cluster II agrees principally with that recently found for the dication $\left[\left(\mathrm{CH}_{3} \mathrm{C}_{5} \mathrm{H}_{4}\right)_{5} \mathrm{~V}_{5} \mathrm{~S}_{6}\right]^{2+}\left(\mathrm{TCNQ}^{-}\right)_{2}$ (III) [4], in which the $\mathrm{V}_{\mathrm{eq}}-\mathrm{V}_{\text {eq }}$ bonds are only slightly lengthened (3.21-3.25 \AA) and the $\mathrm{V}_{\mathrm{eq}}-\mathrm{V}_{\mathrm{ax}}$ bonds are shortened ($2.97-3.01 \AA$). In addition, the $S \ldots S$ contacts between the S atoms bridged for equatorial $\mathrm{V}-\mathrm{V}$ bonds are also shortened (to $2.77 \AA$). At the same time, the lengths of the $\mathrm{V}-\mathrm{S}$ bonds remain practically unchanged $\left(\mathrm{V}_{\mathrm{ax}}-\mathrm{S}\right.$ of $2.22 \AA, \mathrm{~V}_{\mathrm{eq}}-\mathrm{S}$

Table 3
Bond angles $\omega\left({ }^{\circ}\right)$ for II

Angle	ω	Angle	ω
$\mathrm{V}(2) \mathrm{V}(1) \mathrm{V}(3)$	60.00(4)	$\mathrm{S}(2) \mathrm{V}(1) \mathrm{S}(4)$	137.98(8)
$\mathrm{V}(2) \mathrm{V}(1) \mathrm{V}(4)$	58.56(4)	$\mathrm{S}(3) \mathrm{V}(1) \mathrm{S}(4)$	72.72 (7)
$\mathrm{V}(2) \mathrm{V}(1) \mathrm{V}(5)$	58.09(4)	$\mathrm{V}(1) \mathrm{V}(2) \mathrm{V}(3)$	59.64(4)
$\mathbf{V}(2) \mathrm{V}(1) \mathrm{S}(1)$	92.70(6)	$\mathbf{V}(1) \mathrm{V}(2) \mathrm{V}(4)$	58.35(4)
$\mathrm{V}(2) \mathrm{V}(1) \mathrm{S}(2)$	92.55(6)	$\mathrm{V}(1) \mathrm{V}(2) \mathrm{V}(5)$	58.36(4)
$\mathrm{V}(2) \mathrm{V}(1) \mathrm{S}(3)$	47.67(5)	$\mathrm{V}(1) \mathrm{V}(2) \mathrm{S}(3)$	47.55(5)
$V(2) V(1) S(4)$	48.05(5)	$\mathrm{V}(1) \mathrm{V}(2) \mathrm{S}(4)$	47.99(5)
V(3)V(1)V(4)	58.47(4)	$\mathrm{V}(1) \mathrm{V}(2) \mathrm{S}(5)$	92.52(6)
$\mathrm{V}(3) \mathrm{V}(1) \mathrm{V}(5)$	58.98(4)	$\mathrm{V}(1) \mathrm{V}(2) \mathrm{S}(6)$	92.42(6)
$\mathrm{V}(3) \mathbf{V}(1) \mathrm{S}(1)$	48.02(5)	$\mathrm{V}(3) \mathrm{V}(2) \mathrm{V}(4)$	58.28(4)
$\mathrm{V}(3) \mathrm{V}(1) \mathrm{S}(2)$	48.39(5)	$\mathrm{V}(3) \mathrm{V}(2) \mathrm{V}(5)$	58.94(4)
$\mathrm{V}(3) \mathrm{V}(1) \mathrm{S}(3)$	93.11(6)	$\mathrm{V}(3) \mathrm{V}(2) \mathrm{S}(3)$	92.73(6)
$\mathrm{V}(3) \mathrm{V}(1) \mathrm{S}(4)$	92.65(6)	$\mathrm{V}(3) \mathrm{V}(2) \mathrm{S}(4)$	92.32(6)
$\mathrm{V}(4) \mathrm{V}(1) \mathrm{V}(5)$	105.84(5)	$\mathrm{V}(3) \mathrm{V}(2) \mathrm{S}(5)$	48.17(5)
$\mathrm{V}(4) \mathrm{V}(1) \mathrm{S}(1)$	45.96(5)	$\mathrm{V}(3) \mathrm{V}(2) \mathrm{S}(6)$	48.00(5)
$\mathrm{V}(4) \mathrm{V}(1) \mathrm{S}(2)$	105.58(6)	$\mathrm{V}(4) \mathrm{V}(2) \mathrm{V}(5)$	105.90(5)
$\mathrm{V}(4) \mathrm{V}(1) \mathrm{S}(3)$	104.62(6)	$\mathrm{V}(4) \mathrm{V}(2) \mathrm{S}(3)$	104.31(6)
$\mathrm{V}(4) \mathrm{V}(1) \mathrm{S}(4)$	46.01(5)	$\mathrm{V}(4) \mathrm{V}(2) \mathrm{S}(4)$	45.90(5)
$\mathrm{V}(5) \mathrm{V}(1) \mathrm{S}(1)$	105.72(6)	$\mathrm{V}(4) \mathrm{V}(2) \mathrm{S}(5)$	45.91(5)
$\mathrm{V}(5) \mathrm{V}(1) \mathrm{S}(2)$	46.26(5)	$\mathrm{V}(4) \mathrm{V}(2) \mathrm{S}(6)$	104.88(6)
$\mathrm{V}(5) \mathrm{V}(1) \mathrm{S}(3)$	46.19(3)	$\mathrm{V}(5) \mathrm{V}(2) \mathrm{S}(3)$	46.31(5)
$\mathrm{V}(5) \mathrm{V}(1) \mathrm{S}(4)$	104.64(6)	$\mathrm{V}(5) \mathrm{V}(2) \mathrm{S}(4)$	104.85(6)
$\mathrm{S}(1) \mathrm{V}(1) \mathrm{S}(2)$	74.25(7)	$\mathrm{V}(5) \mathrm{V}(2) \mathrm{S}(5)$	105.73(6)
$\mathrm{S}(1) \mathrm{V}(1) \mathrm{S}(3)$	138.00(8)	$\mathrm{V}(5) \mathrm{V}(2) \mathrm{S}(6)$	46.43(5)
$\mathrm{S}(1) \mathrm{V}(1) \mathrm{S}(4)$	91.33(7)	$\mathrm{S}(3) \mathrm{V}(2) \mathrm{S}(4)$	72.61(7)
$\mathrm{S}(2) \mathrm{V}(1) \mathrm{S}(3)$	91.81(7)	$\mathrm{S}(3) \mathrm{V}(2) \mathrm{S}(5)$	137.75(8)
$\mathrm{S}(3) \mathrm{V}(2) \mathrm{S}(6)$	92.25 (7)	$\mathrm{S}(1) \mathrm{V}(3) \mathrm{S}(2)$	74.28(7)
$\mathrm{S}(4) \mathrm{V}(2) \mathrm{S}(5)$	91.15(7)	$\mathrm{S}(1) \mathrm{V}(3) \mathrm{S}(5)$	91.61 (7)
$\mathrm{S}(4) \mathrm{V}(2) \mathrm{S}(6)$	137.58(8)	$\mathbf{S}(1) \mathrm{V}(3) \mathrm{S}(6)$	138.06(8)
$\mathbf{S}(5) \mathrm{V}(2) \mathbf{S}(6)$	73.64(7)	$\mathrm{S}(2) \mathrm{V}(3) \mathrm{S}(5)$	138.31(8)
$\mathrm{V}(1) \mathrm{V}(3) \mathrm{V}(2)$	60.35(4)	$\mathrm{S}(2) \mathrm{V}(3) \mathrm{S}(6)$	91.06 (7)
$\mathrm{V}(1) \mathrm{V}(3) \mathrm{V}(4)$	58.76(4)	$\mathrm{S}(5) \mathrm{V}(3) \mathrm{S}(6)$	73.44(7)
$\mathrm{V}(1) \mathrm{V}(3) \mathrm{V}(5)$	58.32(4)	$\mathrm{V}(1) \mathrm{V}(4) \mathrm{V}(2)$	63.09(4)
$\mathrm{V}(1) \mathrm{V}(3) \mathrm{S}(1)$	48.07(5)	$\mathrm{V}(1) \mathrm{V}(4) \mathrm{V}(3)$	62.77(4)
$\mathrm{V}(1) \mathrm{V}(3) \mathrm{S}(2)$	48.38(5)	$\mathrm{V}(1) \mathrm{V}(4) \mathrm{S}(1)$	50.63(6)
$\mathrm{V}(1) \mathrm{V}(3) \mathrm{S}(5)$	93.02(6)	$\mathrm{V}(1) \mathrm{V}(4) \mathrm{S}(4)$	50.98(6)
$\mathrm{V}(1) \mathrm{V}(3) \mathrm{S}(6)$	92.85 (6)	$\mathrm{V}(1) \mathrm{V}(4) \mathrm{S}(5)$	100.11(7)
$\mathrm{V}(2) \mathrm{V}(3) \mathrm{V}(4)$	58.77 (4)	$\mathrm{V}(2) \mathrm{V}(4) \mathrm{V}(3)$	62.95(4)
$\mathrm{V}(2) \mathrm{V}(3) \mathrm{V}(5)$	58.01(4)	$\mathrm{V}(2) \mathrm{V}(4) \mathrm{S}(1)$	99.98(7)
$\mathrm{V}(2) \mathrm{V}(3) \mathrm{S}(1)$	93.02(6)	$\mathrm{V}(2) \mathrm{V}(4) \mathbf{S}(4)$	50.91(6)
$\mathrm{V}(2) \mathrm{V}(3) \mathbf{S}(2)$	92.83(6)	$\mathrm{V}(2) \mathrm{V}(4) \mathrm{S}(5)$	50.75(6)
$\mathrm{V}(2) \mathrm{V}(3) \mathrm{S}(5)$	48.08(5)	$\mathrm{V}(3) \mathrm{V}(4) \mathrm{S}(1)$	50.74(6)
$\mathrm{V}(2) \mathrm{V}(3) \mathrm{S}(6)$	47.81(5)	$\mathrm{V}(3) \mathrm{V}(4) \mathrm{S}(4)$	$99.96(7)$
$\mathrm{V}(4) \mathrm{V}(3) \mathrm{V}(5)$	105.54(5)	$\mathrm{V}(3) \mathrm{V}(4) \mathrm{S}(5)$	51.12(6)
$\mathrm{V}(4) \mathrm{V}(3) \mathrm{S}(1)$	46.11(5)	$\mathbf{S}(1) \mathrm{V}(4) \mathrm{S}(4)$	100.84(8)
$\mathrm{V}(4) \mathrm{V}(3) \mathrm{S}(2)$	105.85(6)	$\mathbf{S}(1) \mathrm{V}(4) \mathrm{S}(5)$	101.10(8)
$\mathrm{V}(4) \mathrm{V}(3) \mathrm{S}(5)$	46.14(5)	$\mathbf{S} 4) \mathrm{V}(4) \mathrm{S}(5)$	100.87(8)
$\mathrm{V}(4) \mathrm{V}(3) \mathrm{S}(6)$	105.16(6)	$\mathrm{V}(1) \mathrm{V}(5) \mathrm{V}(2)$	63.55(4)
$\mathrm{V}(5) \mathrm{V}(3) \mathrm{S}(1)$	105.13(6)	$\mathrm{V}(1) \mathrm{V}(5) \mathrm{V}(3)$	62.69(4)
$\mathrm{V}(5) \mathrm{V}(3) \mathrm{S}(2)$	45.93(5)	$\mathrm{V}(1) \mathrm{V}(5) \mathrm{S}(2)$	51.21(6)
$\mathrm{V}(5) \mathrm{V}(3) \mathrm{S}(5)$	104.74(6)	$\mathrm{V}(1) \mathrm{V}(5) \mathrm{S}(3)$	50.68(6)
$\mathrm{V}(5) \mathrm{V}(3) \mathrm{S}(6)$	45.94(5)	$\mathrm{V}(1) \mathrm{V}(5) \mathrm{S}(6)$	100.03(7)
$\mathrm{V}(2) \mathrm{V}(5) \mathrm{V}(3)$	63.05(4)	$\mathrm{V}(1) \mathrm{S}(2) \mathrm{V}(5)$	82.54(7)
$\mathrm{V}(2) \mathrm{V}(5) \mathrm{S}(2)$	100.81(7)	$\mathrm{V}(3) \mathrm{S}(2) \mathrm{V}(5)$	83.24(7)

Table 3 (continued)

Angle	ω	Angle	ω
$\mathbf{V}(2) \mathrm{V}(5) \mathrm{S}(3)$	$50.96(6)$	$\mathrm{V}(1) \mathrm{S}(3) \mathrm{V}(2)$	$84.77(7)$
$\mathrm{V}(2) \mathrm{V}(5) \mathrm{S}(6)$	$50.92(6)$	$\mathrm{V}(1) \mathrm{S}(3) \mathrm{V}(5)$	$83.13(7)$
$\mathrm{V}(3) \mathrm{V}(5) \mathrm{S}(2)$	$50.83(6)$	$\mathrm{V}(2) \mathrm{S}(3) \mathrm{V}(5)$	$82.72(7)$
$\mathrm{V}(3) \mathrm{V}(5) \mathrm{S}(3)$	$99.57(7)$	$\mathrm{V}(1) \mathrm{S}(4) \mathrm{V}(2)$	$83.96(7)$
$\mathrm{V}(3) \mathrm{V}(5) \mathrm{S}(6)$	$50.56(6)$	$\mathrm{V}(1) \mathrm{S}(4) \mathrm{V}(4)$	$83.01(7)$
$\mathrm{S}(2) \mathrm{V}(5) \mathrm{S}(3)$	$101.14(8)$	$\mathrm{V}(2) \mathrm{S}(4) \mathrm{V}(4)$	$83.19(7)$
$\mathrm{S}(2) \mathrm{V}(5) \mathrm{S}(6)$	$100.43(8)$	$\mathrm{V}(2) \mathrm{S}(5) \mathrm{V}(3)$	$83.75(7)$
$\mathrm{S}(3) \mathrm{V}(5) \mathrm{S}(6)$	$101.31(8)$	$\mathrm{V}(2) \mathrm{S}(5) \mathrm{V}(4)$	$83.35(7)$
$\mathrm{V}(1) \mathrm{S}(1) \mathrm{V}(3)$	$83.91(7)$	$\mathrm{V}(3) \mathrm{S}(5) \mathrm{V}(4)$	$82.74(7)$
$\mathrm{V}(1) \mathrm{S}(1) \mathrm{V}(4)$	$83.41(7)$	$\mathrm{V}(2) \mathrm{S}(6) \mathrm{V}(3)$	$84.19(7)$
$\mathrm{V}(3) \mathrm{S}(1) \mathrm{V}(4)$	$83.15(7)$	$\mathrm{V}(2) \mathrm{S}(6) \mathrm{V}(5)$	$82.65(7)$
$\mathrm{V}(1) \mathrm{S}(2) \mathrm{V}(3)$	$83.23(7)$	$\mathrm{V}(3) \mathrm{S}(6) \mathrm{V}(5)$	$83.49(7)$

of $2.38 \AA$). The same relatively weak influence of the removal of two electrons on the framework geometry was observed earlier for the series of clusters (i$\left.\mathrm{PrC}_{5} \mathrm{H}_{4}\right)_{4} \mathrm{Mo}_{4} \mathrm{~S}_{4}{ }^{n+}(n=0,1,2)[6]$.

On the other hand, the metalla framework of the known oxygen-bridge cyclopentadienyl analogue $\mathrm{Cp}_{5} \mathrm{~V}_{5} \mathrm{O}_{6}$ seems to be much more compressed $\left(\mathrm{V}_{\mathrm{ax}}-\mathrm{V}_{\text {eq }}\right.$ of $2.752(2) \AA, V_{e q}-V_{\text {eq }}$ of $2.740(2) \AA, V_{\text {ax }}-\mathrm{O}$ of $1.861(5) \AA, \mathrm{V}_{\text {eq }}-\mathrm{O}$ of $1.992(6) \AA, \mathrm{O} \ldots \mathrm{O}$ $2.444(8) \AA$) [1]. It is worth noting that this oxygen-containing cluster has antiferromagnetic properties while cluster II is diamagnetic, in contrast to the data [4] on its weak paramagnetism ($\mu_{\text {effective }}$ was equal to $0.98 \mu_{\mathrm{B}}$). The same influence of the nature of the bridge ligands on the magnetic properties of clusters was observed in the tetrahedral chromium clusters $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{X}_{4}$, which are diamagnetic when $\mathrm{X}=\mathrm{S}$ [7] and antiferromagnetic when $\mathrm{X}=\mathrm{O}$ [1]. Apparently, the electronic structure of $\mathrm{Cp}_{5} \mathrm{~V}_{5} \mathrm{X}_{6}{ }^{n}$ clusters has the same pecularities as those in the case of the tetrahedral clusters $\mathrm{Cp}_{4} \mathrm{M}_{4} \mathrm{X}_{4}{ }^{n}$ [8], where the extended Hückel method calculation has shown the slightly antibonding character of the HOMO and also the approach of the HOMO and LUMO upon going from $X=S$ to $X=O$.

Experimental

All operations were carried out in a pure argon atmosphere. Heptane was purified by distillation over dispersed Na in a pure argon stream. IR spectra were measured with a Specord IR-75 instrument. Mass spectra were recorded on an automatic DS-50 system. X-Ray data were obtained with an automatic four-circle Hilger \& Watts diffractometer ($\lambda \mathrm{Mo}-K_{\alpha}, \theta / 2 \theta$ scan, $2 \leqslant \theta \leqslant 60^{\circ}$). The structure was solved by direct methods and refined using block-diagonal approximation for all non-hydrogen atoms to $R=0.048\left(R_{\mathrm{w}}=0.061\right)$ for 5420 reflections. All calculations were performed on an Eclypse $\mathrm{S} / 200$ computer using INEXTL programs [9].
$\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{5} \mathrm{~V}_{5}\left(\mu_{3}-\mathrm{S}\right)_{6}$
$3.5 \mathrm{~cm}^{3}$ of $\mathrm{HSCMe}_{3}(33.3 \mathrm{~m} M$) was added to a violet solution of $3.45 \mathrm{~g}(16.5$ $\mathrm{m} M$) of $\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{~V}$ in 60 ml of heptane and the reaction mixture obtained was refluxed for 3 h . The brown solution obtained was concentrated to 10 ml at $50^{\circ} \mathrm{C} / 10 \mathrm{Torr}$ and was chromatographed on a $15 \times 3 \mathrm{~cm} \mathrm{Al} \mathrm{C}_{2} \mathrm{O}_{3}$ column; brown (A)
and then violet (B) zones were eluted with heptane. $1.6 \mathrm{~g}(2.46 \mathrm{mM})$ of $\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{4} \mathrm{~V}_{4} \mathrm{~S}_{4}$ [5] was isolated from the brown eluant (A). The violet eluant (B) was concentrated to 10 ml and cooled to $-5^{\circ} \mathrm{C}$. The precipitated violet needles were separated from the solution, washed with cool pentane and dried in vacuo. Yield: $0.36 \mathrm{~g}(0.43 \mathrm{mM}, 13.5 \%)$. IR spectrum (ν, cm^{-1}): $435 \mathrm{w}, 595 \mathrm{w}, 795 \mathrm{w}, 805 \mathrm{w}$, $1020 \mathrm{~m}, 1355 \mathrm{~m}, 1435 \mathrm{~m}, 1485 \mathrm{w}, 1505 \mathrm{w}, 2840 \mathrm{~m}, 2905 \mathrm{~m}, 2940 \mathrm{~m}, 3080 \mathrm{w}$.

Acknowledgements

The authors are grateful to Dr. D.V. Zagorevskii for measuring the mass spectra and to Dr. O.G. Ellert for magnetochemical measurements.

References

1 F. Bottomley, D.E. Paez, P.S. White, J. Am. Chem. Soc., 104 (1982) 5651.
2 J.C. Huffman, J.G. Stone, W.C. Krusell, K.G. Caulton, J. Am. Chem. Soc., 99 (1977) 5829.
3 A.A. Pasynskii, I.L. Eremenko, Yu.V. Rakitin, V.M. Novotortsev, O.G. Ellert, V.T. Kalinnikov, V.E. Shklover, Yu.T. Struchkov, T.Kh. Kurbanov, G.Sh. Gasanov, J. Organomet. Chem., 248 (1983) 309.
4 C.M. Bolinger, J. Darkwa, G. Gammie, S.D. Gammon, J.W. Lyding, T.B. Rauchfuss, S.R. Wilson, Organometallics, 5 (1986) 2386.
5 I.L. Eremenko, A.A. Pasynskii, Yu.T. Struchkov, A.S. Katugin, O.G. Ellert, V.E. Shklover, Izv. Akad. Nauk SSSR, Ser. Khim., (1984) 1669.
6 J.A. Bandy, C.E. Davies, J.C. Green, M.L.H. Green, R. Prout, D.P.S. Rodgers, J. Chem. Soc., Chem. Commun., (1983) 1395.
7 E.O. Fischer, K. Ulm, H.P. Fritz, Chem. Ber., 93 (1960) 2167.
8 P.D. Williams, M.D. Curtis, Inorg. Chem., 25 (1986) 4562.
9 R.G. Gerr, A.I. Yanovski, Yu.T. Struchkov, Kristallographia, 28 (1983) 1029.

